Современное тепловое оборудование. Классификация теплового оборудования

ГЛАВА 6. Тепловое оборудование

6.1. Классификация теплового оборудования

Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов. Их можно классифицировать по нескольким различным признакам.

По своему функциональному назначению тепловое оборудование классифицируется на универсальное и специализированное. К универсальным тепловым аппаратам относятся плиты кухонные, с помощью которых можно осуществлять различные приемы тепловой обработки. Специализированные тепловые аппараты предназначены для реализации отдельных способов тепловой обработки.

По технологическому назначению специализированное тепловое оборудование классифицируется на варочное, жарочное, жарочно-пекарное, водогрейное и вспомогательное. Варочное оборудование включает пищеварочные котлы, автоклавы, парова-рочные аппараты, сосисковарки. В группу жарочного оборудования входят сковороды, фритюрницы, грили, шашлычные печи.

К жарочно-пекарному оборудованию относятся жарочные и пекарные шкафы, парожарочные аппараты. Водогрейное оборудование представлено кипятильниками и водонагревателями. Вспомогательное оборудование включает мармиты, тепловые шкафы и стойки, термостаты, оборудование для транспортировки пищи.

В зависимости от источника теплоты оборудование классифицируется на электрические, паровые, огневые, газовые (твердо-или жидкотопливные) тепловые аппараты.

По структуре рабочего цикла тепловое оборудование подразделяется на аппараты периодического и непрерывного действия.

По способу обогрева различают контактные тепловые аппараты и аппараты с непосредственным и косвенным обогревом пищевых продуктов. В контактных тепловых аппаратах продукт нагревается при непосредственном контакте с теплоносителем (например, с паром в пароварочных аппаратах).

В аппаратах с непосредственным обогревом теплота к продуктам передается через разделительную стенку (например, котлы и сковороды), в аппаратах с косвенным обогревом - через промежуточный теплоноситель. В качестве промежуточного теплоносителя используют воду, пар, минеральные масла, органические и кремнийорганические жидкости.

По конструктивному решению тепловые аппараты классифицируются на несекционные и секционные, смодулированные и модулированные. Несекционные тепловые аппараты имеют различные габариты, конструктивное исполнение; их детали и узлы не унифицированы и они устанавливаются индивидуально, без учета блокировки с другими аппаратами. Несекционное оборудование требует для своей установки значительных площадей, так как его монтаж и обслуживание осуществляются со всех сторон.

Секционное оборудование выполняется в виде отдельных секций, в которых основные узлы и детали унифицированы. Фронт обслуживания таких аппаратов - с одной стороны, благодаря чему возможно соединение отдельных секций и получение блока аппаратов требуемой мощности и производительности.

В основу конструкции модульных аппаратов положен единый размер - модуль. При этом ширина (глубина) и высота до рабочей поверхности всех аппаратов одинаковы, а длина кратна модулю. Основные детали и узлы этих аппаратов максимально унифицированы.

Научно-технический прогресс современного производства пищевой промышленности внес большие изменения в способы тепловой обработки кулинарной продукции предприятий общественного питания. Наряду с традиционными поверхностными (кондуктивными) способами приготовления пищи широко используют объемные способы тепловой обработки продуктов.

Объемные способы нагрева основываются на взаимодействии продукта с электромагнитным полем. Электромагнитная энергия от генератора излучения, превращаясь в тепловую, проникает в массу продукта на значительную глубину и за очень короткий период времени обеспечивает его прогрев до готового состояния.

Поверхностные способы приготовления пищевой продукции по технологическому назначению классифицируются на варочные, жарочные, жарочно-пекарные, водогрейные и вспомогательные. Варочное оборудование включает в себя:

пищеварочные котлы, технологической средой которых является вода или бульон при температуре 100°С;

автоклавы, в которых тепловая обработка осуществляется паром при температуре 135 ... 140°С;

пароварочные аппараты, в которых технологический процесс приготовления пищи осуществляют паром при температуре 105 ... 107 °С;

вакуум-аппараты, рабочей средой которых является греющий пар при температуре 140 ... 150°С.

В группу жарочного оборудования входят:

сковороды, на которых операцию жарки осуществляют в небольшом количестве жира при температуре 180 ... 190°С;

фритюрницы, процесс жарки в которых происходит в жире при температуре 160 ... 190°С;

жарочные шкафы (грили, шашлычные печи), осуществляющие процесс приготовления продуктов в горячем воздухе при температуре 150 ... 300°С.

К жарочно-пекарному оборудованию относят: печи, жарочные и пекарные шкафы, в которых технологической средой является горячий воздух при температуре 150 ... 300°С;

паро-жарочные аппараты, рабочей средой которых является смесь горячего воздуха и перегретого пара при температуре 150 ... 300°С.

Водогрейное оборудование представлено кипятильниками и водонагревателями.

Вспомогательное оборудование включает в себя мармиты, тепловые шкафы и стойки, термостаты, оборудование для транспортировки пищи.

Объемные способы тепловой обработки продуктов осуществляют: в СВЧ-шкафах периодического и непрерывного действия; сверхвысокочастотный способ обеспечивает большую скорость нагрева продукции;

ИК-аппаратах; инфракрасный нагрев основан на интенсивном поглощении ИК-излучений свободной водой, находящейся в продуктах;

аппаратах ЭК-нагрева; электроконтактный нагрев основан на тепловой энергии, выделяемой током в течение определенного времени при прохождении его через продукт, обладающий определенным активным (омическим) электросопротивлением;

установках индукционного нагрева; индукционный нагрев пищевых продуктов, особенно с повышенной влажностью, возникает при помещении их во внешнее переменное магнитное поле, в котором по закону электромагнитной индукции возникают вихревые токи (токи Фуко), линии которых замыкаются в толще продукта, электромагнитная энергия рассеивается в его объеме, вызывая нагрев.

Основным преимуществом СВЧ является быстрота нагрева пищевой продукции.

Однако этому способу нагрева присущи и недостатки - отсутствие корочки на поверхности продукта и, как правило, естественный цвет сырья.

Положительными показателями ИК-нагрева являются равномерный цвет и толщина поджаривания.

Вместе с тем этому способу присущи недостатки:

не все продукты можно подвергать ИК-нагреву;

при высокой плотности потока ИК-излучения возможен «ожог» продукта.

ЭК-нагрев применяется как самостоятельный вид обработки, так и в комбинации с другими способами. В частности, он успешно используется в хлебопекарном производстве для прогрева тестовой массы при выпечке хлеба, в производстве сосисок, при бланшировании мясопродуктов.

Индукционный способ нагрева пока еще не получил широкого распространения на предприятиях общественного питания, однако он обладает значительными экономическими возможностями для успешного применения в будущем.

Учитывая то, что поверхностные и объемные способы тепловой обработки пищевой продукции наряду с достоинствами обладают и недостатками, целесообразно использовать их в производстве общественного питания в комбинации.

Классификация теплового оборудования предприятий общепита

Тепловое оборудование предприятий общественного питания можно классифицировать следующим образом:

1) по организационно-техническому признаку; 2) по функциональному или технологическому назначению; 3)по конструктивным особенностям; 4) по способу теплообмена; 5) по видам источников теплоты и теплоносителей; 6) по изменению параметров процесса во времени; 7) по степени специализации.

По организационно-техническому признаку различают тепловые аппараты непрерывного либо периодического действия и комбинированные.

В аппаратах непрерывного действия приготовление пищи осуществляется в непрерывном цикле, т.е. загрузка сырья, приготовление изделия и его выгрузка происходят одновременно.

Успешное развитие оборудования общественного питания может быть осуществлено лишь при условии разработки и широкого внедрения аппаратов непрерывного действия, так как они позволяют резко повысить производительность труда, сократить производственные площади, улучшить условия работы обслуживающего пер­сонала. Аппараты непрерывного действия легко автоматизировать.

В аппаратах периодического действия загрузка сырья, приготовление пищи и выгрузка готового изделия разобщены во времени. Как правило, наиболее продолжительным является процесс приготовления пищи.

Эти аппараты труднее автоматизировать, их обслуживание требует значительных затрат труда.

К аппаратам комбинированного действия относятся те из них, в которых часть процессов осуществляется периодически, а часть происходит непрерывно.

По функциональному, или технологическому, назначению тепловые аппараты можно подразделить: на аппараты для варки (в кипящей жидкости или на пару), для жарки или выпечки (на нагретой поверхности, в среде горячего воздуха, в большом количестве пищевого жира, в поле инфракрасного излучения и т.д.), а также аппараты для реализации комбинированных тепловых кулинарных процессов - тушения, запекания, припускания, бланширования и т. д.

По функциональному (технологическому) назначению выделяют группу теплового оборудования, предназначенного для размораживания и разогрева (подогрева) пищи, а также для поддержания постоянной температуры готовых кулинарных изделий.

По степени специализации аппараты подразделяют на одноцелевые (специализированные) (например, жарочные или варочные, на которых можно проводить только один из этих процессов), узкоспециализированные и многоцелевые (универсальные). К первым относят аппараты для реализации одного процесса, но для всевозможных пищевых продуктов. Универсальные аппараты предназначены для осуществления любых процессов тепловой обработки пищи, связанной с ее нагревом при обработке.

По конструктивным особенностям (признакам) аппараты подразделяют на следующие группы: секционные и несекционные, модулированные и немодулированные. Безусловно, более прогрессивными являются аппараты секционного и модулированного типа, состоящие из отдельных секций и модулей. Это позволяет путем комплектации нескольких секций получить тепловой аппарат требуемой произво­дительности.

Специальное модульное оборудование позволяет сократить при его установке на 12-20 % производственную площадь. Это оборудование проще эксплуатировать и обслуживать.

По способу теплообмена можно выделить три основные группы аппаратов, работающих на принципе конвекции, лучеиспускания и теплопроводности. Однако фактически во всех тепловых аппаратах эти способы переноса теплоты сосуществуют, но проявляются в различной степени. Иногда при классификации по этому признаку аппараты подразделяют на аппараты поверхностные, аппараты непосредственного воздействия источника теплоты на продукт и аппараты, в которых осуществляется смешение нагреваемой среды с источником теплоты.

В аппаратах первого типа обязательно существует поверхность раздела между источником теплоты и нагреваемым объектом. Например, продукт находится в котле, а источник теплоты - вне его, т. е. такой поверхностью служит стенка котла.

Подавляющее большинство тепловых аппаратов, применяемых в общественном питании, относится к поверхностным. В качестве примера аппаратов, в которых происходит непосредственный контакт источника теплоты и нагреваемого объекта, можно привести пароварочные аппараты.

Наконец, примером аппаратов третьего типа могут служить водонагреватели, в которых греющий пар вводится в нагреваемую им воду.

По виду источников теплоты и теплоносителя выделяют аппараты электрические, паровые и огневые (твердожидкогазотопливные).

По виду теплоносителя различают аппараты, использующие воду, различные органические и неорганические жидкости, расплавленные металлы, пар, воздух и т. п.

По способу изменения параметров процессов, происходящих в аппаратах во времени , классифицируют аппараты, в которых процессы протекают по установившемуся (стационарному) и неустановившемуся (нестационарному) режимам.

В первом случае изменение параметров, например температуры, в какой-либо точке не зависит от времени..

В неустановившемся процессе температура в любой точке зависит не только от координат, характеризующих ее расположение в пространстве, но и от времени.

Для подавляющего большинства тепловых аппаратов, применяемых в общест­венном питании, наиболее характерны процессы, протекающие в нестационарном режиме. Стационарные процессы в их настоящем виде реализуются в непрерывнодействующих аппаратах.

2. ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ТЕПЛОВЫМ АППАРАТАМ ПРЕДПРИЯТИЙ ОБЩЕСТВЕННОГО ПИТАНИЯ

Основные требования, предъявляемые к тепловому оборудованию предприятий общественного питания, являются общими для большинства тепловых аппаратов. Это технологические, эксплуатационные, энергетические, конструктивные, экологические и экономические требования. Особое место занимают требования, связанные с охраной труда обслуживающего персонала.

Технологические требования . Аппарат должен обеспечивать возможность приготовления продукта отличного качества, характеризуемого высокой пищевой ценностью и безопасного для употребления.

Непременным технологическим требованием является обеспечение такой тепловой обработки, при которой потери сырья и самого продукта минимальны. Кроме того, аппарат должен обеспечивать приготовление продукта за возможно меньший период времени.

Эксплуатационные требования . Аппараты должны быть удобны и просты в обслуживании. В процессе приготовления пищи должна быть обеспечена возможность контроля основных параметров и регулирования процесса в зависимости от технологических режимов. Важное эксплуатационное требование - доступность всех узлов аппарата для их мойки и санитарной обработки, а также профилактического осмотра и выполнения текущего ремонта.

Важнейшее эксплуатационное требование - полная безопасность персонала, обслуживающего оборудование.

Энергетические требования . Они являются многоплановыми и охватывают ряд связанных между собой условий. Аппараты должны работать в энергосберегающих режимах (т.е. при минимальных расходах электроэнергии, топлива, пара и любых других источников теплоты и теплоносителей), должны быть обеспечены устройствами или приспособлениями, регулирующими количество подводимой энергии в зависимости от требований технологических режимов на разных этапах приготовления пищи.

Основная характеристика энергоемкости процесса, реализуемого в тепловых аппаратах, - удельные расходы энергии (на единицу произ­водимой продукции):

где Э уд - удельный расход энергии, Дж/кг; Э з - общие затраты энергии на работу аппарата в течение всего производственного цикла (вывод аппарата на рабочий режим, работа аппарата в рабочем режиме), Дж; П - количество продукции, выражаемое в единицах массы, объема или в порциях.

В целях экономии потребляемой энергии аппараты должны иметь тепловую изоляцию, существенно сокращающую потери теплоты в окружающую среду.

Конструктивные требования . Они объединяют все остальные требования, предъявляемые к тепловому оборудованию. При конструировании учитываются технология приготовления пищи и условия эксплуатации оборудования с учетом охраны труда обслуживающего персонала. При конструировании машин и аппаратов необходимо стремиться к минимальной их энергоемкости.

Одним из таких требований является обеспечение низкой материалоемкости (т. е. масса металлов и других конструкционных материалов, которые необходимы для изготовления тепловых аппаратов, должна быть минимально возможной). Для характеристики материалоемкости аппаратов можно использовать ее удельный показатель:

где m уд.п - удельная материалоемкость оборудования по продукту, кг/кг (или кг на 1 порцию, или кг/м 3); М - общая масса оборудования, кг, П – количество продукции.

Можно также удельную материалоемкость аппаратов относить к их объему:

где m уд. V - удельная металлоемкость аппарата, отнесенная к объему аппарата, кг/м 3 ; V - объем аппарата, м 3 .

Конструкция тепловых аппаратов должна предусматривать использование в них унифицированных узлов и деталей, легко заменяемых и доступных для ремонта. Оптимальной является конструкция, состоящая из секций или модулей.

К числу конструктивных требований относятся также условия транспортировки оборудования и их монтажа. Аппараты, имеющие большие габариты, не соответствующие размерам обычных транспортных средств, должны быть разборными. Монтаж оборудования не должен быть затруднен.

При конструировании тепловых аппаратов необходимо учитывать, что их узлы и элементы, имеющие непосредственный контакт с продуктом, должны быть изготовлены из металлов и материалов, не оказывающих какого-либо вредного воздействия на продукт, обслуживающий персонал и окружающую среду. Конструктивные требования включают в себя безотказность, долговечность и ремонтопригодность аппаратов, что обусловливает их надежность в эксплуатации.

Под безотказностью понимают способность аппарата работать без нарушения его работоспособности как в целом, так и его частей.

Долговечность представляет собой свойство аппарата сохранять высокую работоспособность до предельного состояния, при котором использование аппарата невозможно. Она характеризуется наработкой (продолжительностью работы) и ресурсом (сроком эксплуатации), заложенными при конструировании.

Экологические требования . Во время работы тепловое оборудование не должно выбрасывать в атмосферу и канализацию опасные для здоровья людей, жизни животных и растений вредные вещества.

Это означает, что в качестве топлива следует использовать газы, уголь, дрова, нефтепродукты, имеющие высокую степень сгорания и, следовательно, в минимальной степени образующие дымовые отходы, в которых бы не содержалось вредных веществ, загрязняющих окружающую среду. При мойке оборудования в моющие жидкости не должно попадать вредных веществ с поверхностей аппаратов, т. е. они должны быть изготовлены из материалов, не растворимых в воде и моющих растворах, которые без дополнительной очистки поступают в канализацию.

Экономические требования . Их сущность заключается в том, чтобы оборудование было дешевым, быстро окупалось. Экономические требования синтезируют в себе фактически все выше рассмотренные.

Требования, связанные с охраной труда. Совершенно очевидно, что все тепловое оборудование, эксплуатируемое на предприятиях общественного питания, должно обеспечивать полную безопасность для обслуживающего персонала.

Тепловые аппараты должны быть снабжены различными блокирующими, сигнализирующими и другими устройствами, которые автоматически срабатывают при возникновении опасных для людей ситуаций.

Требования к системам автоматизации теплового оборудования. Автоматизация предусматривает создание систем машин и аппаратов, в которых основные процессы осуществляются с минимальными затратами физического труда.

Автоматизация в общественном питании имеет основные цели: облегчение труда человека, обеспечение его безопасности, повышение качества продукции, сокращение ее расхода, снижение энергетических затрат.

В настоящее время системы автоматизации подразделяют на следующие три основных вида: автоматический контроль, автоматическая защита и автоматическое управление.

    Основы тепловой обработки пищевых продуктов

    Классификация тепловых аппаратов и их структура

    Источники теплоты и теплоносители

    Теплогенерирующие устройства

    Варочное тепловое оборудование

    Жарочные тепловые аппараты

    Эксплуатация теплового оборудования

1. Основы тепловой обработки пищевых продуктов

При тепловой обработке изменяются структурно-механические, физико-химические и органолептические свойства продукта, определяющие степень кулинарной готовности. Нагревание вызывает в продукте изменения белков, жиров, углеводов, витаминов и минеральных веществ.

Основными приемами тепловой обработки пищевых продуктов являются варка и жаренье, применяемые как самостоятельные процессы, так и в различных комбинациях. Каждый из приемов имеет несколько разновидностей (варка в среде пара, жарка во фритюре и т.д.). Для реализации этих приемов в тепловом оборудовании используют различные способы нагрева продуктов: поверхностный, объемный, комбинированный. При всех способах нагрева пищевых продуктов внешний теплообмен сопровождается массопереносом, в результате которого часть влаги продуктов переходит во внешнюю среду. При тепловой обработке продуктов в жидких средах вместе с влагой также теряется часть сухих веществ.

Практически все пищевые продукты являются капиллярно-пористыми телами, в капиллярах которых жидкость удерживается силами поверхностного натяжения. При нагревании продуктов эта жидкость начинает мигрировать (перемещаться) от нагретых слоев к более холодным.

При жаренье продуктов влага из поверхностных слоев частично испаряется, а частично перемещается вглубь к более холодным участкам, что приводит к образованию сухой корочки, в которой происходит термический распад органических веществ (при температуре более 100 °С). Чем быстрее нагревается поверхность, тем интенсивнее происходит перенос тепла и влаги и тем быстрее образуется поверхностная корочка.

Поверхностный нагрев продукта осуществляется теплопроводностью и конвекцией при подводе теплоты к центру продукта через его наружную поверхность. При этом нагрев центральной части продукта и доведение его до кулинарной готовности происходят в основном за счет теплопроводности.

Интенсивность теплообмена зависит от геометрической формы, размеров и физических параметров обрабатываемого продукта, режима движения (продукта и среды), температуры и физических параметров греющей среды. Продолжительность процесса тепловой обработки при поверхностном нагреве обусловлена низкой теплопроводностью большинства пищевых продуктов.

Объемный способ подвода тепла к обрабатываемому продукту реализуется в аппаратах с инфракрасным (ИК), сверхвысокочастотным (СВЧ), электроконтактным (ЭК) и индукционным нагревом.

Инфракрасное излучение преобразуется в объеме обрабатываемого продукта в теплоту без непосредственного контакта между источником ИК-энергии (генератором) и самим изделием. Носителями ИК-энергии являются электромагнитные колебания переменного электромагнитного поля, возникающие в продукте.

Инфракрасная энергия в обрабатываемом продукте образуется при переходе электронов с одних энергетических уровней на другие, а также при колебательном и вращательном движениях атомов и молекул. Переходы электронов, движение атомов и молекул происходят при любой температуре, но с ее повышением интенсивность ИК-излучения увеличивается.

СВЧ-нагрев пищевых продуктов осуществляется за счет преобразования энергии переменного электромагнитного поля сверхвысокой частоты в тепловую энергию, генерируемую по всему объему продукта. СВЧ-поле способно проникать в обрабатываемый продукт на значительную глубину и осуществлять его объемный нагрев независимо от теплопроводности, т.е. применяться для продуктов с различной влажностью. Высокая скорость и высокий коэффициент полезного действия нагрева делают его одним из самых эффективных способов доведения пищевых продуктов до кулинарной готовности.

СВЧ-нагрев называют диэлектрическим из-за того, что большинство пищевых продуктов плохо проводят электрический ток (диэлектрики). Другие его названия - микроволновый, объемный - подчеркивают короткую длину волны электромагнитного поля и сущность тепловой обработки продукта, происходящей по всему объему.

Эффект разогрева пищевых продуктов в СВЧ-поле связан с их диэлектрическими свойствами, которые определяются поведением в таком поле связанных зарядов. Смещение связанных зарядов под действием внешнего электрического поля называется поляризацией. Наибольшие затраты энергии внешнего электрического поля связаны с дипольной поляризацией, которая возникает в результате воздействия электромагнитного поля на полярные молекулы, обладающие собственным ди-польным моментом. Примером полярной молекулы является молекула воды. При отсутствии внешнего поля дипольные моменты молекул имеют произвольные направления. В электрическом поле на полярные молекулы действуют силы, стремящиеся повернуть их таким образом, чтобы дипольные моменты молекул совпадали. Поляризация диэлектрика состоит в том, что его диполи устанавливаются в направлении электрического поля.

Электроконтактный нагрев обеспечивает быстрое повышение температуры продукта по всему объему до требуемой величины за 15-60 с за счет пропускания через него электрического тока. Способ применяется в пищевой промышленности для прогревания тестовых заготовок при выпечке хлеба, при бланшировании мясопродуктов. Продукция, подвергаемая нагреванию, располагается между электрическими контактами. Зазоры между поверхностью продукции и контактов могут вызвать «ожог» поверхности.

Индукционный нагрев применяется в современных индукционных бытовых плитах и на предприятиях общественного питания. Индукционный нагрев токопроводящих материалов, к которым относится большинство металлов для наплитной посуды, возникает при их помещении во внешнее переменное магнитное поле, создаваемое индуктором. Индуктор, установленный под настилом плиты, создает вихревые токи, замыкающиеся в объеме посуды. Продукт обрабатывают в специальной металлической наплитной посуде, которая нагревается практически мгновенно из-за направленного действия электромагнитного поля. При этом потери тепла в окружающую среду сведены до минимума, что сокращает затраты энергии на приготовление блюда по сравнению с обычной электрической плитой на 40 %. В таких тепловых аппаратах настил плиты, как правило, изготовляется из керамических материалов и при тепловой обработке остается практически холодным.

Комбинированные способы нагрева пищевых продуктов - это последовательный или параллельный нагрев продукции несколькими из известных способов с целью сокращения времени тепловой обработки, повышения качества конечного продукта и эффективности технологического процесса. Так, комбинированная тепловая обработка продуктов в СВЧ-поле и ИК-лучами позволяет реализовать преимущества обоих способов нагрева и получать изделия с поджаристой хрустящей корочкой.

Понравилась статья? Поделитесь ей
Наверх