Условия, необходимые для возникновения и развития жизни на планетах. Какие условия необходимы для жизни растений? Условия, необходимые для роста и развития растений Условия зарождения жизни

Отрывок из книги русского учёного Николая Левашова "Неоднородная Вселенная" Гл. 4

Этот материал непосредственно связан с вопросом " Природы образования планетарных систем ", поэтому для более полного понимания рекомендуется ознакомиться с указанным материалом .

Вопрос о возникновении жизни на нашей планете всегда был «камнем преткновения». С древних времён философы, учёные пытались разгадать тайну жизни. Создавались разные теории, гипотезы о природе живой материи. Все они базируются на постулатах (понятиях, принимаемых без доказательств). Чтобы сохранить эти теории жизнеспособными, позднее вводились новые и новые постулаты.

В настоящее время все существующие научные теории имеют в своём фундаменте десятки, а порой и сотни постулатов. К их числу относится и современная физика. Информация, которую человечество накопило к концу двадцатого века, полностью делает эти теории несостоятельными. Явления, которые учёные наблюдают, посредством приборов или визуально, есть проявления реальных законов природы. Но, реальные законы природы формируются на уровнях макрокосмоса и микрокосмоса.

Всё, с чем человек соприкасается в своей жизни, находится между макрокосмосом и микрокосмосом. Именно поэтому, когда человек с помощью приборов смог заглянуть в микромир, он впервые столкнулся с законами природы, а не с их проявлениями. Материя не появилась из неоткуда. Всё гораздо проще и сложнее одновременно: то, что человек знает о материи и думает, как о завершённом, абсолютном понятии, на самом деле, является лишь маленькой частью этого понятия. Материя действительно никуда не исчезает и ниоткуда не появляется; действительно существует Закон Сохранения Материи, только он не такой, каким его представляют люди. Таким образом, существующие научные теории, основанные на постулатах, оказались мёртворождёнными. Они не смогли дать какого-либо стройного и логического объяснения. Невозможность существующих теорий объяснить условия и причины зарождения жизни не извиняют это незнание. Жизнь на нашей планете появилась более четырёх миллиардов лет назад и её развитие привело к появлению разумности, но существующая цивилизация до сих пор, не может ответить на простой вопрос: что такое жизнь, как она возникла из так называемой неживой материи? Каким образом и почему, неживая материя, вдруг, преобразуется в живую? Без понимания этого вопроса, человечество не может называть себя разумной расой, а только неразумным малышом, для которого пришла пора набираться ума-разума. Итак, какие условия должны были возникнуть на планете, при которых возможно зарождение жизни?

Условия зарождения жизни на планетах

Прежде, чем объяснить природу зарождения жизни, в первую очередь необходимо определить, какие условия должны существовать, чтобы на планете могла зародиться, по крайней мере, белковая жизнь. Девять планет солнечной системы - наглядный пример этому. В данный момент, только на планете Земля существуют необходимые и достаточные условия для жизни или, по крайней мере, сложноорганизованной живой материи. И первоочередной задачей является определение этих условий. Исходя из понимания вышеупомянутых процессов, происходящих на макро- и микроуровнях пространства, можно выделить следующие условия, необходимые для зарождения жизни:

1. Наличие постоянного перепада мерности ς . Величина постоянного перепада мерности и коэффициент квантования пространстваγ i (определяющий количество форм материй данного типа, которые могут слиться в пределах этого перепада) определяют эволюционный потенциал возможной жизни. Кратность этих величин - критерий, дающий представление о количестве качественных барьеров (уровней), возникающих внутри этого перепада мерности. Количество барьеров характеризует качественное многообразие возможной жизни. В том числе, возможность появления разума и его развития. Мерность макропространства, после завершения формирования планеты, возвращается к исходному уровню, который был до взрыва сверхновой звезды. После завершения процесса образования возникает постоянный перепад мерности между уровнем мерности физически плотного вещества (2.89915 ) и уровнем мерности окружающего макрокосмоса (3.00017 ). Таким образом, постоянный перепад мерности является необходимым условием возникновения жизни. Важное значение имеет величина этого перепада. Именно величина перепада определяет эволюционный потенциал живой материи, жизни. Минимальный перепад мерности, при котором возможно зарождение жизни, должен быть равен:

ς = 1γ i (ΔL) (4.2.1)

Появление элементов разума и зарождение памяти, без которой невозможно развития разума, возможно при перепаде мерности, равном:

ς = 2γ i (ΔL) (4.2.2)

Необходимым условием для возникновения разума и его эволюции является перепад мерности:

ς = 3γ i (ΔL) (4.2.3)

Таким образом, используя перепад мерности, как критерий, можно говорить о требовании к качественной структуре пространства-вселенной (для нашего пространства-вселенной (γ i (ΔL) = 0.020203236... ). Только пространства-вселенные, образованные тремя и большим количеством форм материй имеют необходимые условия для зарождения жизни и разума

2. Наличие воды . Вода является основой органической жизни на нашей планете. Конечно же, существуют формы жизни не только на белковой основе. Но для начала, необходимо проследить закономерности возникновения белковой жизни. Необходимо понять, что происходит в нашем собственном доме перед тем, как заглядывать в чужие.

3. Наличие атмосферы . Атмосфера является наиболее динамичной, активной частью планеты. Она быстро и резко реагирует на изменения состояния внешней среды, что очень важно для возникновения жизни. Наличие в атмосфере кислорода и углекислого газов - знак наличия на планете белковой жизни. Атмосфера не должна быть очень плотной и чрезмерно разрежённой. При очень плотной атмосфере излучения звезды не достигают поверхности планеты и не нагревают её. При этом нижние слои атмосферы не поглощают излучения звезды и тепловые излучения поверхностных слоёв планеты. В результате, перепад мерности между освещённой и ночной частями поверхности планеты не возникает. И, как следствие, не возникает движение атмосферных масс в нижних слоях атмосферы. При отсутствии градиента (перепада) мерности вдоль поверхности планеты, не возникают атмосферные электрические разряды. В чрезмерно разрежённой атмосфере нижние слои имеют возможность поглощать излучения звезды и тепловые излучения поверхности. Но, при этом, не возникает движение атмосферных масс, как результат её чрезмерной разрежённости. Как известно, величина и плотность атмосферы определяется размером и массой планеты. Поэтому, только планеты, соизмеримые по размерам и массе с нашей планетой Землёй имеют максимально благоприятные условия для возникновения белковой жизни. Атмосфера не должна быть ни чрезмерно «тяжёлой», ни чрезмерно «лёгкой».

4. Наличие периодической смены дня и ночи. Планетарные сутки не должны быть очень короткими или очень длинными. Планеты с продолжительностью планетарных суток в пределах диапазона 18-48 земных часов имеют максимально благоприятные условия для возникновения жизни. При массовом поглощении фотонов света атомами поверхностного слоя больших площадей, происходит увеличение уровня мерности этого слоя на некоторую величину ΔL. Эта величина соответствует амплитуде волн, которые поглощаются поверхностным слоем планеты (инфракрасное, оптическое, ультрафиолетовое излучения Солнца). В результате этого, перепад между уровнями мерности атмосферы и поверхности планеты в зоне поглощения уменьшается на величину ΔL, в то время, как неосвещённая или ночная часть поверхности сохраняет прежний перепад уровней мерности между атмосферой и поверхностью. Таким образом, возникает перепад мерности между освещённой и неосвещённой зонами поверхности планеты. Возникает параллельный поверхности планеты перепад (градиент) мерности. Определяющее значение имеет величина этого перепада. Дело в том, что молекулы атмосферы находятся под воздействием гравитационного поля планеты, существующего постоянно, как следствие формирования в зоне неоднородности макропространства постоянного перепада мерности, направленного от внешних границ к центру зоны неоднородности.

Гравитационное поле планеты компенсируется тем, что каждый атом или молекула атмосферы имеют уровни собственной мерности, очень близкие к верхней границе диапазона устойчивости физически плотного вещества. Вступает в силу, так называемый, «эффект поплавка», когда каждая молекула или атом стремятся к положению максимально устойчивого состояния равновесия. Именно, благодаря этому, молекулы и атомы атмосферы не падают на поверхность планеты, как молекулы и атомы более тяжёлых элементов. Перепад (градиент) мерности между дневной и ночной зонами направлен вдоль поверхности планеты, что приводит в движение свободные материи параллельно её поверхности от зоны с большим уровнем мерности (освещённая поверхность) к зоне с меньшим уровнем мерности (неосвещённая поверхность). В результате появления второго направления движения свободных материй параллельно поверхности, возникает перепад атмосферного давления Рис. 4.2.1) и уменьшается сила тяжести.

Так как молекулы атмосферы не связаны между собой в жёсткие (твёрдое состояние вещества) или полужёсткие системы (жидкое состояние вещества), то перепад мерности пространства вдоль поверхности приводит к тому, что поток свободных материй увлекает за собой молекулы, образующие атмосферу. Воздушные массы приходят в движение, возникает ветер. При этом, «разогретые» молекулы (молекулы, поглотившие солнечные излучения) перемещаются на неосвещённую территорию, где происходит спонтанное (самопроизвольное) излучение ими волн. Другими словами, вследствие того, что собственный уровень мерности этих молекул выше собственного уровня атмосферы неосвещённой поверхности, этот перепад, между мерностью среды и собственной мерностью разогретых молекул, вызывает неустойчивое состояние последних и провоцирует спонтанное излучение молекулами волн. «Холодные» молекулы, в свою очередь, имеют уровень собственный мерности ниже собственного уровня мерности освещённой территории, что провоцирует массовое поглощение излучений Солнца и тепловых излучений освещённой поверхности. Постепенно происходит выравнивание между собственным уровнем мерности освещенной поверхности и собственным уровнем мерности молекул. При этом, если собственный уровень мерности «холодных» молекул значительно отличается от собственного уровня мерности освещённой территории, происходит снижение последнего. Когда собственный уровень мерности освещённой территории опускается до уровня, так называемой, точки «росы», молекулы воды из газообразного состояния переходят в жидкое. Выпадает роса. Если это происходит на уровне облачности, процесс каплеобразования приобретает цепной характер, и выпадает дождь. При этом, состояние качественного барьера между вторым и физическим уровнями возвращается к норме. В случае, когда этот процесс происходит быстро и резко, скопившиеся на уровне качественного барьера свободные материи стекают лавинообразно. И, как следствие, возникают атмосферные электрические разряды - молнии. Аналогией этому процессу может послужить плотина на реке, у которой открыли все шлюзы, и вся вода, накопленная плотиной, освобождается одновременно. Периодическая смена дня и ночи делает закономерным и естественными описанное выше.

Оптимальными для возникновения жизни являются планеты с продолжительностью планетарных суток в интервале значений 18-48 земных часов. При меньшей продолжительности планетарных суток, описанные выше процессы не достигают уровня, при котором происходит активное движение атмосферных масс и разряды атмосферного электричества, без чего, возникновение органической жизни невозможно. Более длительные планетарные сутки (больше, чем 48 земных часов) приводят к постоянному штормовому состоянию атмосферы планеты, что создаёт тяжёлые условия для возникновения и развития жизни. На таких планетах жизнь может возникнуть только, когда интенсивность излучений звезды, достигающих поверхности планеты, уменьшится до определённого уровня. Только при уровне излучений звезды, когда освещённая поверхность планеты не перегревается, возникают условия для зарождения жизни. Обычно такие условия появляются на последней стадии эволюции звёзд и даже, если на них и возникает жизнь, то она не успевает развиться до сложных форм перед тем, как звезда погибает. Кроме этого, если продолжительность планетарных суток небольшая, перепад мерности не достигает уровня, при котором возникают какие-либо существенные движения масс нижних слоёв атмосферы планеты. Если же продолжительность планетарных суток большая, перепад мерности становится настолько существенным, что приводит к мощным и продолжительным атмосферным бурям и штормам, в результате которых, уничтожается верхний слой планетарного грунта, что создаёт невозможность развития флоры планеты, без которой развитие экологической системы просто невозможно. Штормовое состояние атмосферы вызывает также мощное движение поверхностных слоёв океанов планеты, что, в свою очередь, делает невозможным зарождение жизни в воде.

5. Наличие разрядов атмосферного электричества. Во время разрядов атмосферного электричества, в мрской воде происходит синтез органических молекул. В зоне разряда создаётся дополнительное искривление пространства (изменение уровня мерности), при котором молекулы неорганических соединений, растворённых в воде, соединяются между собой в качественно новом порядке, образуя органические соединения, которые представляют собой цепочки однотипных атомов. Только мощные разряды атмосферного электричества способны создать необходимые условия, при которых уровень мерности достигает критической величины. Две свободные электронные связи каждого из этих атомов в состоянии присоединить к себе, как свободные ионы, так и другие цепочки-молекулы. Атмосферные электрические разряды возникают, как следствие перепада толщины качественного барьера между физическим и вторым уровнями планеты. Когда ночь своим покровом обнимает землю, поверхностный слой планеты начинает охлаждаться и излучать тепловые волны. И, как при всяком излучении, уровень мерности излучающего атома или молекулы уменьшается. Когда это происходит одновременно с триллионами триллионов атомов и молекул на ограниченной территории (площадь, освещённая звездой в дневное время), уровень мерности уменьшается на всей этой территории. Если за день атмосфера и поверхность планеты сильно разогрелись, а ночью произошло резкое охлаждение, возникает скачок уровня мерности. При этом, скопившиеся на уровне качественного барьера свободные материи лавиной обрушиваются вниз. Происходит электрический разряд между атмосферой и поверхностью планеты.

Итак, необходимыми условиями для возникновения жизни на планетах являются:

наличие постоянного перепада мерности,

наличие воды,

наличие атмосферы,

наличие периодической смены дня и ночи,

наличие разрядов атмосферного электричества.

Жизнь зарождается автоматически на всех планетах, где существуют перечисленные выше условия. И таких планет во Вселенной - миллиарды. Наша планета Земля не является уникальным творением природы.

История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни.

Прежде всего, следует отметить, что жизнь (во всяком случае в той форме, в которой она функционирует на Земле) может существовать в достаточно узком диапазоне температур, давлений и радиации. Также для появления жизни на Земле нужны вполне определенные материальные основы - химические элементы-органогены и в первую очередь углерод, так как именно он лежит в основе жизни. Этот элемент обладает рядом свойств, делающих его незаменимым для образования живых систем. Углерод способен образовывать разнообразные органические соединения, число которых достигает нескольких десятков миллионов. Среди них - насыщенные водой, подвижные, низкоэлектропроводные, скрученные в цепи структуры. Соединения углерода с водородом, кислородом, азотом, фосфором, серой и железом обладают хорошими каталитическими, строительными, энергетическими, информационными и иными свойствами.

Наряду с углеродом к «кирпичикам» живого относятся кислород, водород и азот. Ведь живая клетка состоит на 70% из кислорода, углерода в ней - 17%, водорода - 10%, азота - 3%. Элементы-органогены принадлежат к наиболее устойчивым и распространенным во Вселенной химическим элементам. Они легко соединяются между собой, вступают в реакции и обладают малым атомным весом. Их соединения легко растворяются в воде. Эти элементы, очевидно, поступили на Землю вместе с космической пылью, которая стала материалом для «строительства» планет Солнечной системы. Еще на стадии формирования планет возникли углеводороды, соединения азота, в первичных атмосферах планет было много метана, аммиака, водяного пара и водорода. Они, в свою очередь, стали сырьем для получения сложных органических веществ, входящих в состав белков и нуклеиновых кислот (аминокислот и нуклеотидов).

Огромную роль в появлении и функционировании живых организмов играет вода, ведь они на 90% состоят из воды. Поэтому вода является не только средой, но и обязательным участником всех биохимических процессов. Вода обеспечивает метаболизм клетки и


терморегуляцию организмов. Кроме того, водная среда как уникальная по своим упругим свойствам структура позволяет всем определяющим жизнь молекулам реализовать свою пространственную организацию. Поэтому жизнь зародилась в воде, но даже выйди из моря на сушу, она сохранила внутри живой клетки океаническую среду.

Наша планета богата водой и расположена на таком расстоянии от Солнца, что необходимая для жизни основная масса воды находится в жидком, а не в твердом или газообразном состоянии, как на других планетах. На Земле поддерживается оптимальная температура для существования жизни, основанной на углероде.

Какой была древнейшая жизнь?

Наши знания о ранее живших организмах невелики. Ведь миллиарды особей, представлявших самые разные виды, исчезли, не оставив после себя никаких следов. По оценкам некоторых палеонтологов, в ископаемом состоянии до нас дошли останки только 0,01% всех видов живых организмов, населявших Землю. Среди них - только те организмы, которые могли сохранить структуру своих форм путем замещения или в результате сохранности отпечатков. Все прочие виды до нас просто не дошли, и о них мы не сможем узнать ничего и никогда.

Долгое время считалось, что возраст древнейших отпечатков живых организмов, к которым относятся трилобиты и другие высокоорганизованные водные организмы, составляет 570 млн. лет. Позже были найдены следы намного более древних организмов - минерализовавшихся нитчатых и округлых микроорганизмов примерно десятка различных видов, напоминающих простейших бактерий и микроводорослей. Возраст этих останков, найденных в кремнистых пластах Западной Австралии, был оценен в 3,2-3,5 млрд. лет. Эти организмы, видимо, имели сложную внутреннюю структуру, в них присутствовали химические элементы, соединения которых были способны участвовать в процессе фотосинтеза. Данные организмы бесконечно сложны по сравнению с самым сложным из известных органических соединений абиогенного происхождения. Нет сомнений, что это не самые ранние формы жизни и что существовали их более древние предшественники.

Таким образом, истоки жизни на Земле уходят в тот «темный» первый миллиард лет существования нашей планеты, который не оставил следа в ее геологической летописи. Данную точку зрения подтверждает и тот факт, что известный биогеохимический цикл углерода, связанный с фотосинтезом, в биосфере стабилизировался более 3,8 млрд. лет назад. Это позволяет считать, что фотоавто-трофная биосфера существовала на нашей планете не менее 4 млрд.


лет назад. Однако по данным цитологии и молекулярной биологии, фотоавтотрофные организмы были вторичными в процессе эволюции живого вещества. Автотрофному способу питания живых организмов должен был предшествовать гетеротрофный способ как более простой. Автотрофные организмы, строящие свое тело за счет неорганических минеральных веществ, имеют более позднее происхождение. Об этом свидетельствуют следующие факты:

Все современные организмы обладают системами, приспособленными к использованию готовых органических веществ как исходного строительного материала для процессов биосинтеза;

Преобладающее число видов организмов в современной биосфере Земли может существовать только при постоянном снабжении готовыми органическими веществами;

У гетеротрофных организмов не встречается никаких признаков или рудиментарных остатков тех специфических ферментных комплексов и биохимических реакций, которые характерны для автотрофного способа питания.

Таким образом, можно сделать вывод о первичности гетеротрофного способа питания. Древнейшая жизнь, вероятно, существовала в качестве гетеротрофных бактерий, получавших пищу и энергию за счет органического материала абиогенного происхождения, образовавшегося еще раньше, на космической стадии эволюции Земли. Следовательно, начало жизни как таковой отодвигается еще дальше, за пределы каменной летописи земной коры, более чем на 4 млрд. лет назад.

Говоря о древнейших организмах на Земле, также следует отметить, что по типу своего строения они были прокариотами, возникшими вскоре после появления археклетки. В отличие от эука-риотов они не имели оформленного ядра, и ДНК располагалась в клетке свободно, не отделяясь от цитоплазмы ядерной мембраной. Различия между прокариотами и эукариотами гораздо глубже, чем между высшими растениями и высшими животными: и те и другие относятся к эукариотам. Представители прокариотов живут и сегодня. Это бактерии и сине-зеленые водоросли. Очевидно, первые организмы, жившие в очень жестких условиях первоначальной Земли, были похожи на них.

Ученые также не сомневаются в том, что древнейшие организмы, населявшие Землю, были анаэробами, получавшими необходимую им энергию за счет дрожжевого брожения. Большая часть современных организмов являются аэробными и используют кислородное дыхание (окислительные процессы) как способ получения энергии.

Таким образом, прав был В. И. Вернадский, предположивший, что жизнь сразу возникла в виде примитивной биосферы. Только


разнообразие видов живых организмов могло обеспечить выполнение всех функций живого вещества в биосфере. Ведь жизнь является мощнейшей геологической силой, вполне сравнимой как по энергетическим затратам, так и по внешним эффектам с такими геологическими процессами, как горообразование, извержение вулканов, землетрясения и т.д. Жизнь не просто существует в окружающей ее среде, но активно эту среду формирует, преобразуя ее «под себя». Не следует забывать, что весь лик современной Земли, все ее ландшафты, осадочные и метаморфические породы (граниты, гнейсы, образовавшиеся из осадочных пород), запасы полезных ископаемых, современная атмосфера являются результатом действия живого вещества.

Эти данные позволили Вернадскому утверждать, что с самого начала существования биосферы входящая в нее жизнь должна была быть уже сложным телом, а не однородным веществом, так как биогеохимические функции жизни в силу своего разнообразия и сложности не могут быть связаны только с какой-то одной формой жизни. Таким образом, первичная биосфера изначально была представлена богатым функциональным разнообразием. Поскольку организмы проявляются не единично, а в массовом эффекте, то первое появление жизни должно было произойти не в виде какого-то одного вида организмов, а в их совокупности. Иными словами, сразу должны были появиться первичные биоценозы. Состояли они из простейших одноклеточных организмов, так как все без исключения функции живого вещества в биосфере могут быть выполнены ими.

И, наконец, следует сказать, что первичные организмы и биосфера могли существовать только в воде. Выше мы уже говорили, что все организмы нашей планеты теснейшим образом связаны с водой. Именно связанная вода, не теряющая своих основных свойств, является их важнейшим составным компонентом и составляет 60-99,7% веса.

Именно в водах первичного океана образовался «первичный бульон». Ведь морская вода сама по себе представляет естественный раствор, содержащий все известные химические элементы. В ней образовались вначале простые, а затем и сложные органические соединения, среди которых были аминокислоты и нуклеотиды. В этом «первичном бульоне» и произошел скачок, давший начало жизни на Земле. Немаловажное значение для появления и дальнейшего развития жизни имела радиоактивность воды, которая тогда была в 20-30 раз большей, чем сейчас. Хотя первичные организмы были намного устойчивее к радиации, чем современные, мутации в те времена происходили намного чаще, поэтому естественный отбор шел интенсивнее, чем в наши дни.


Кроме того, не следует забывать о том, что первичная атмосфера Земли не содержала свободного кислорода, поэтому в ней отсутствовал озоновый экран, защищающий нашу планету от ультрафиолетовой радиации Солнца и жесткого космического излучения. В силу этих причин на суше жизнь просто не могла возникнуть, жизнь возникла в первичном океане, воды которого служили достаточным препятствием для этих лучей.

Итак, подводя итоги, следует отметить, что первичные организмы, возникшие на Земле более 4 млрд. лет назад, обладали следующими свойствами:

Они были гетеротрофными организмами, т.е. питались готовыми органическими соединениями, накопленными на этапе космической эволюции Земли;

Они были прокариотами - организмами, лишенными оформленного ядра;

Они были анаэробными организмами, использующими в качестве источника энергии дрожжевое брожение;

Они появились в виде первичной биосферы, состоящей из биоценозов, включающих различные виды одноклеточных организмов;

Они появились и долгое время существовали только в водах первичного океана.

Начало жизни на Земле

Поскольку жизнь неразрывно связана со средой своего обитания, то начало жизни следует изучать в тесной связи с теми космическими и геологическими процессами, в ходе которых образовалась и развивалась наша планета.

Завершение этапа космической эволюции Земли, в ходе которой она сложилась из планетезималий, произошло около 4,5 млрд. лет назад. После этого наша планета стала постепенно остывать и начала формироваться земная кора, а также атмосфера и гидросфера за счет дегазации лав, выплавлявшихся из верхней мантии при интенсивном вулканизме. Мы имеем все основания полагать, что при этом на поверхность Земли поступали, прежде всего, пары воды и газообразные соединения углерода, серы и азота.

Первичная атмосфера Земли была очень тонкой, разреженной, атмосферное давление у поверхности не превышало 10 мм ртутного столба. Состав первичной атмосферы формировался из тех газов, которые выбрасывались при извержении вулканов. Это подтверждает анализ пузырьков газа, обнаруженных в протоархейских породах (60% - углекислота, 40% - соединения серы, аммиака, метана, другие окислы углерода, а также пары воды). Первичная атмосфера


Воды первичного океана имели примерно такой же состав, как и сегодня, но в них, как и в атмосфере, отсутствовал свободный кислород. Таким образом, свободный кислород, а значит, и химический состав современный атмосферы, как и свободный кислород океанов Земли, не были первоначально заданы при рождении нашей планеты как небесного тела, а являются результатом жизнедеятельности первых живых организмов, составивших первичную биосферу Земли.

Под действием солнечных и космических лучей, проникавших через разреженную атмосферу, происходила ее ионизация, превращавшая атмосферу в холодную плазму. Поэтому атмосфера ранней Земли была насыщена электричеством, в ней вспыхивали частые разряды. В таких условиях шел быстрый одновременный синтез разнообразных органических соединений, в том числе и весьма сложных. Эти соединения, как и те, что попали на Землю в уже готовом виде из космоса, представляли собой подходящее сырье, из которого на следующей стадии эволюции могли образоваться аминокислоты и нуклеотиды.

Радиоактивный разогрев недр Земли пробудил тектоническую активность, заработали вулканы, выделявшие огромное количество вулканических газов. Это уплотнило атмосферу, отодвинув границу ионизации в ее верхние слои. При этом процесс образования органических соединений продолжался.

Вопрос 1. Какие условия необходимы для возникновения живых организмов, по мнению древнегреческих философов?
Древнегреческие философы считали, что живые организмы возникают из неживых путем самозарождения. По мнению Аристотеля, должно существовать некое «активное начало», которое способно, используя неживую материю, создать живой организм. Он считал, что такое активное начало присутствует в оплодотворенном яйце, солнечном свете и гниющем мясе.

Вопрос 2. В чем заключается смысл опытов Ф. Реди?
В начале XVII в. было распространено убеждение, что личинки мух самопроизвольно зарождаются из гнилого мяса. Франческо Реди (1626-1698) в своих опытах решил опровергнуть это заблуждение. Он помещал мясо в сосуды и часть из них закрывал марлей. В сосудах, закрытых марлей, куда не могли попасть мухи, личинки не появлялись, а в открытых через несколько дней обнаруживалось множество личинок. Опыты Ф. Реди нанесли серьезный удар по теории самозарождения и подтвердили концепцию биогенеза, согласно которой жизнь может возникнуть только из уже существующей жизни.

Вопрос 3. Опишите опыты Л. Пастера, доказывающие невозможность самозарождения жизни в обычных условиях.
Сторонники теории абиогенеза («виталисты», лат. вита - жизнь) считали, что существует «жизненная сила», с помощью которой неживое может стать живым. Опровержением этой точки зрения послужили опыты Луи Пастера, доказавшие невозможность самопроизвольного зарождения жизни; в 1862 г. Пастер за эти опыты получил премию Французской Академии наук.
Луи Пастер в своих опытах пользовался колбами собственного изобретения с длинным тонким горлышком в форме буквы S. Он наливал в колбу питательный бульон и кипятил его на огне, оставляя горлышко открытым. Это было важно, поскольку считалось, что причиной отсутствия самозарождения жизни в закрытых сосудах является невозможность проникновения в них «жизненной силы», необходимой для самозарождения. Пастер в своих опытах не препятствовал возможному проникновению «жизненной силы» в колбу, однако не давал попасть туда микроорганизмам (они оседали на изгибах трубки). В итоге бульон мог храниться долгое время, оставаясь стерильным. Если же горлышко отламывали, то бульон очень быстро мутнел из-за появления в нем бактерий.

Вопрос 4. Что вам известно о гипотезе вечности жизни?
Гипотеза вечности жизни, или гипотеза стационарного состояния, утверждает, что жизнь на Земле никто не создавал, поскольку она существует вечно. Виды тоже никогда не возникали, они были и есть, а эволюции не существует. Может происходить лишь изменение численности видов или их вымирание. Гипотеза вечности жизни была выдвинута немецким ученым В. Прейером в 1880 г. Он предполагал, что даже раскаленные области внутри земного шара могут являться скоплением живых организмов со своим обменом веществ.

Вопрос 5. Какие вы знаете материалистические теории возникновения жизни?
Существует несколько основных концепций возникновения жизни:
жизнь была создана Творцом в определенное время (креационизм);
жизнь возникла самопроизвольно из неживого вещества (этой точки зрения придерживался, в частности, Аристотель);
жизнь существовала всегда - концепция стационарного состояния (выдвинута немецким ученым В. Прейером в 1880 г.);
концепция панспермии - внеземного происхождения жизни (была выдвинута шведским физиком и химиком, создателем теории электролитической диссоциации и гипотезы о парниковом эффекте Сванте Аррениусом (1859-1927).);
концепция происхождения жизни на Земле в историческом прошлом в результате процессов, подчиняющихся физическим и химическим законам.
Полностью идеалистической является только первая из этих концепций, полностью материалистической - только последняя. Правильность ее основных положений была подтверждена в дальнейшем многими учеными.

Вопрос 6. Что вы думаете о гипотезе занесения жизни на Землю из космоса?
Гипотеза панспермии, или занесения жизни извне, была выдвинута шведским физиком и химиком, создателем теории электролитической диссоциации и гипотезы о парниковом эффекте Сванте Аррениусом (1859-1927). Он утверждал, что жизнь попала на нашу планету из космоса вместе с метеоритами или космической пылью, перемещающимися под давлением лучей света. Примером, свидетельствующим в пользу этой гипотезы, является способность некоторых организмов переносить крайне неблагоприятные условия. Споры и семена растений способны длительное время находиться в жидком кислороде и азоте и при этом не терять всхожести. Сперматозоиды, находившиеся десятки лет в замороженном состоянии, сохраняют способность к оплодотворению. Споры бактерий выдерживают колебания температур от -273 до +140 o С. Данная гипотеза не лишена права на существование, однако она не решает проблему собственно возникновения жизни.


Часто приходится сталкиваться с утверждением, будто Пастер опроверг теорию самопроизвольного зарождения. Между тем сам Пастер заметил однажды, что его двадцатилетние безуспешные попытки выявить хотя бы один случай самопроизвольного зарождения отнюдь не убедили его в том, что самопроизвольное зарождение невозможно. В сущности Пастер лишь доказал, что жизнь в его колбах за то время, пока длился опыт, и в тех условиях, которые были для этого выбраны (стерильная питательная среда, чистый воздух), действительно не зарождалась. Однако он вовсе не доказал, что жизнь не могла возникнуть из неживой материи никогда, ни при каком сочетании условий.
Действительно, в наше время ученые полагают, что жизнь возникла из неживой материи, но только в условиях, резко отличающихся от нынешних, и на протяжении периода, длившегося сотни миллионов лет. Многие считают появление жизни обязательным этапом эволюции материи и допускают, что это событие происходило неоднократно и в разных частях Вселенной.
При каких условиях может возникнуть жизнь? Есть, видимо, четыре главных условия, а именно: наличие определенных химических веществ, наличие источника энергии, отсутствие газообразного кислорода (02) и безгранично долгое время. Из необходимых химических веществ вода имеется на Земле в изобилии, а прочие неорганические соединения присутствуют в горных породах, в газообразных продуктах извержений вулканов и в атмосфере. Но, прежде чем говорить о том, как из этих простых соединений могли бы за счет различных источников энергии образоваться органические молекулы (в отсутствие живых организмов, которые производят их теперь), обсудим третье и четвертое условия.
Время. В гл. 9 мы видели, что если при наличии фермента то или иное превращение данного количества вещества завершается за одну-две секунды, то в отсутствие фермента для того же превращения могли бы потребоваться миллионы лет. Разумеется, и до появления ферментов химические реакции ускорялись в присутствии источников энергии или различных других катализаторов, но все же они протекали крайне медленно. После того как простые органические молекулы появились, они должны были еще объединяться во. все более крупные и сложные структуры, а вероятность того, что это произойдет, да еще и при надлежащих условиях, кажется поистине ничтожной.
Однако при наличии достаточного времени даже и самые маловероятные события должны рано или поздно произойти. Если, например, вероятность того, что какое-нибудь событие произойдет в течение одного года, составляет 0,001, то вероятность того, что оно не произойдет в течение одного года равна 0,999, в течение двух лет-(0,999)2, а в течение трех-(0,999)3. Из табл. 13.1 видно, сколь мала вероятность того, что это событие не произойдет хотя бы однажды за 8128 лет. И наоборот, чрезвычайно велика вероятность (0,9997) того, что оно произойдет за этот срок хотя бы однажды, а это могло бы уже оказаться достаточным для возникновения жизни на Земле. Вероятность событий, от которых зависело возникновение жизни, была, очевидно, гораздо ниже, чем 0,001, но зато и времени для этого было неизмеримо больше. Земля, как полагают, образовалась приблизительно 4,6 млрд, лет назад, а первые известные нам остатки прокариотических клеток обнаружены в горных породах, сформировавшихся на 1,1 млрд, лет позднее. Таким образом, сколь ни маловероятным представляется появление живых систем, времени для этого было настолько много, что оно, по-видимому, было неизбежным!
Отсутствие газообразного кислорода. Жизнь, несомненно, могла возникнуть лишь в то время, когда в земной атмосфере не было или почти не было 02. Кислород взаимодействует с органическими веществами и разрушает их или лишает их тех свойств, которые делали бы их полезными для предбиологических систем. Это происходит медленно, но все же гораздо быстрее, чем протекали реакции, в результате которых должно было происходить образование органических веществ на первобытной Земле до появления жизни. Поэтому если бы органические молекулы на первобытной Земле соприкасались с 02, то они существовали бы недолго и не успевали бы образовать более сложные структуры. В этом одна из причин того, что самопроизвольное зарождение жизни из органического вещества в наше время невозможно. (Вторая причина в том, что в наши дни свободные органические вещества поглощаются бактериями и грибами еще до того, как их успевает разрушить кислород.)
Геология учит нас, что древнейшие породы образовались на Земле в то время, когда ее атмосфера еще не содержала 02. Атмосферы самых больших планет нашей Солнечной системы, Юпитера и Сатурна, состоят главным образом из газообразного водорода (Н2), воды (Н20) и аммиака (NH3). Первичная земная атмосфера могла иметь такой же состав, но водород, будучи очень легким, вырывался, вероятно, из сферы притяжения Земли и рассеивался
Таблица 13.1. Вероятность того, что данное событие не произойдет
Если вероятность того, что данное событие не произойдет в течение одного года, равна 0,999

в космическом пространстве. Солнечное излучение, гораздо более интенсивное на Земле, чем на внешних планетах, должно было вызывать разложение аммиака на Н2 (тоже ускользавший в космическое пространство) и газообразный азот (N2). В то время когда на Земле зарождалась жизнь, земная атмосфера состояла, вероятно, главным образом из водяных паров, двуокиси углерода и азота с небольшой примесью других газов при почти полном отсутствии Практически весь кислород, содержащийся в атмосфере в настоящее время,-это продукт фотосинтеза, происходящего в живых растениях.

Около 5 млрд. лет назад в результате конденсации вещества газопылевого в многочисленных центрах флуктуаций его концентрации и соответствующего возникновения центров гравитационного взаимодействия случайных скоплений вещества. Часть таких скоплений оказывалась неустойчивой, другие, составившие в конце концов единую равновесную систему, постепенно росли, притягивая вещество распыленной части этого облака. Само оно возникло в результате взрыва сверхновой, которая была звездой первого поколения, водородно-гелиевой. В «нормальных», принадлежащих главной последовательности, звездах первого поколения реакции ядерного синтеза могут идти только до железа. Синтез более тяжелых элементов сопровождается не выделением, а поглощением . Необходимое для этого количество энергии обеспечивается только в предвзрывной стадии развития сверхновой, поэтому образующееся при ее взрыве газопылевое облако содержит практически все , хотя основную долю суммарной массы продуктов вспышки сверхновой по-прежнему составляют и гелий.

Подавляющая часть вещества газопылевого облака сконцентрировалась вокруг одного центра гравитации, образовав скопление звездного масштаба, остальное вещество при конденсации образовало планеты. По мере уплотнения вещества под действием гравитационных кинетическая энергия слипавшихся частиц переходила в , и образовывавшиеся сгустки вещества разогревались тем сильнее, чем они были массивнее. Когда в центральной части Солнца возникли достаточно высокие и температура, вспыхнула реакция ядерного синтеза, и Солнце стало настоящей звездой. Устойчивость звезды обусловлена равновесием сил сжатия под действием и расширения под действием выделяющейся энергии ядерного синтеза. Это равновесие нарушается при значительно больших, чем у Солнца, размерах: предел устойчивости - 1,44 массы Солнца. Поэтому Солнце - весьма устойчивая звезда. Его запасов водорода хватит еще на 5-6 млрд. лет, так что проблемы угасания Солнца практически не существует.

Очевидно, процесс «разгорания» нашего светила, когда оно продолжало притягивать и накапливать вещество, продолжался достаточно долго, пока звезда не вошла в стабильный режим. Сгустки вещества, ставшие впоследствии планетами, также разогревались по мере стягивания на себя окружающих газов и пыли, но даже не достиг размеров, достаточных для превращения в звезду. Постепенно запасы вещества в окружающем пространстве истощались, и планеты начали остывать, в то время как Солнце продолжало разогреваться уже не только за счет поглощения вещества, но и вследствие начала реакций ядерного синтеза. «Разгоравшееся» Солнце посылало в окружающее пространство все возраставший поток энергии. Ближайшие к нему планеты испытывали и испытывают наиболее сильный нагрев солнечным излучением, в то же время остыванию удаленных от Солнца планет его излучение почти не препятствовало. Потому Меркурий на стороне, обращенной к Солнцу, раскален, температура на поверхности Венеры, как показали прямые измерения космическими аппаратами, превышает 400°С (см. статью « «), - весьма «прохладная» планета, а поверхность Юпитера и остальных планет покрыта льдами.

Если бы на Земле не было жизни и ее не была очищена фотосинтезирующими растениями от углекислого газа, температура на ее поверхности, как показывают расчеты, превышала бы 300 градусов. Это означает, во-первых, что если на Земле исчезнет жизнь, то она не сможет возникнуть на ней вторично, и, во-вторых, что в Солнечной системе только наша планета в своей истории прошла достаточно длительный период, в течение которого Солнце было еще недостаточно горячим, а Земля достаточно остывшей, чтобы на ее поверхности удерживалась температура, в которой могли существовать сложные органические .

Химическая эволюция органических веществ неорганического происхождения привела в конце концов к возникновению первичных белков и нуклеиновых кислот, структурно-информационное взаимодействие которых оказалось основой фундаментальных свойств живого - наследственности и изменчивости . С этого момента началась собственно органическая эволюция, создававшая все более сложные и многочисленные виды . К тому времени, когда Земля могла начать перегреваться излучением стабилизировавшегося Солнца, на ней уже возникли фотосинтезирующие растения. Количество углекислого газа в атмосфере стало уменьшаться, и тепловое излучение получило возможность покидать Землю, в результате чего температура на большей части ее поверхности остается пригодной для существования жизни уже многие сотни миллионов лет. Земля с ее биосферой представляет собой саморегулирующуюся систему.

Повышение концентрации углекислого газа в пределах, создаваемых ходом природных процессов, ведет к потеплению вследствие «парникового эффекта», но одновременно усиливает процессы фотосинтеза. Это ведет к снижению концентрации С02, усилению излучения тепла в пространство и снижению температуры поверхности Земли. Масса океанских вод, обладающая огромной суммарной теплоемкостью, служит своеобразным демпфером, придающим процессам необходимую инертность. В систему регулирования теплового режима включены также и воздушные потоки, взаимодействие которых определяет в конечном итоге локальные особенности температурного режима и распределения осадков при той или иной средней температуре поверхности Земли. Тот факт, что во взаимодействии с атмосферой, гидросферой и литосферой, в которой откладываются излишки углерода, выводимые из атмосферы, биосфера способна в планетарном масштабе поддерживать условия собственного существования, составляет существо выдвинутой Лавлоком в 1979 г. «гипотезы Геи» - живой Земли.

Понравилась статья? Поделитесь ей
Наверх